

## **OXFORD CAMBRIDGE AND RSA EXAMINATIONS**

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

**MATHEMATICS** 

2638

Mechanics 2

Thursday

14 JUNE 2001

Morning

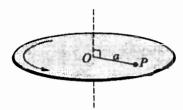
1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME 1 hour 20 minutes

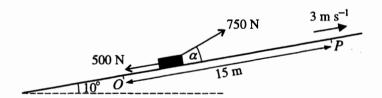
## INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s<sup>-2</sup>.
- You are permitted to use a graphic calculator in this paper.


## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.


- 1 The engine of a car of mass 1000 kg is capable of a maximum power of 20 kW.
  - (i) With the engine working at maximum power the car can travel at a constant speed of  $40 \,\mathrm{m\,s}^{-1}$  on a horizontal straight road. Find the magnitude of the resistance to motion of the car. [3]
  - (ii) Assuming the resistance to motion is unchanged, find the acceleration of the car at an instant when it is travelling at 32 m s<sup>-1</sup> on the same road with its engine working at maximum power.

2



- (i) The diagram shows a horizontal turntable, with centre O, which rotates with constant angular speed  $\frac{1}{2}\sqrt{\left(\frac{g}{a}\right)}$ . A particle P is situated on the turntable at a point whose distance from O is a. The coefficient of friction between the particle and the turntable is  $\mu$ . The particle moves with the turntable and no sliding takes place. Show that  $\mu \ge \frac{1}{4}$ .
- (ii) Another particle Q is also situated on the turntable; it moves with the turntable and no sliding takes place. The speed of Q is  $\frac{1}{4}\sqrt{(ag)}$ . Find, in terms of a, the greatest and least possible values of the distance PQ.

3



A crate of mass 100 kg is dragged up a slope, which is inclined at  $10^{\circ}$  to the horizontal, by a constant force. The force has magnitude 750 N and acts at an angle  $\alpha$  upwards from the slope. The total resistance to motion of the crate has a constant magnitude of 500 N. The crate starts from rest at the point O and passes the point P, 15 m from O, with a speed of 3 m s<sup>-1</sup> (see diagram).

- (i) For the crate's motion from O to P, find
  - (a) the increase in kinetic energy,

[1]

(b) the increase in gravitational potential energy,

[2]

(c) the work done against the resistance to motion of the crate.

[1]

(ii) Hence find the angle  $\alpha$ .

[3]

4 Two uniform rectangular blocks X and X' are made of the same material. X has length 24 cm and height 15 cm, and X' has length 30 cm and height 20 cm. X and X' have the same thickness. X' is placed on top of X with their front faces ABCD and A'B'C'D' in the same vertical plane.

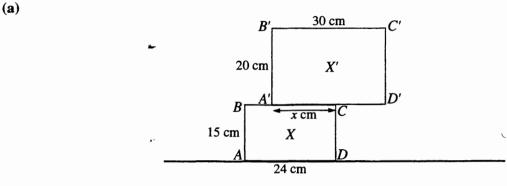



Fig. 1

X stands on a horizontal table, and the blocks rest in equilibrium with A'C = x cm (see Fig. 1).

- (i) State the least possible value of x when X and X' are not attached to each other. [1]
- (ii) Find the least possible value of x when X and X' are glued together. [4]

**(b)** 

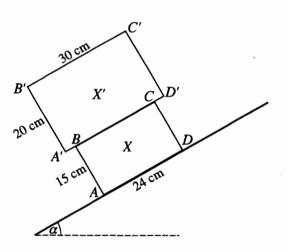
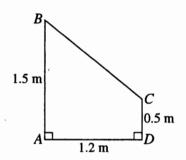



Fig. 2


X and X' are glued together with the mid-points of BC and A'D' coinciding. The combined blocks are placed on a plane inclined at an angle  $\alpha$  to the horizontal (see Fig. 2). The plane is sufficiently rough to prevent any sliding. Given that the blocks remain in equilibrium, find the greatest possible value of  $\alpha$ . [4]

Two smooth spheres A and B, of equal radius and of masses 0.3 kg and 0.2 kg respectively, are free to move on a smooth horizontal table. A is moving with speed  $5 \text{ m s}^{-1}$  when it collides directly with B, which is stationary. As a result of the collision B starts to move with speed  $4.5 \text{ m s}^{-1}$ .

(i) Find the coefficient of restitution between the spheres.

[4]

- (ii) The sphere B subsequently strikes a fixed barrier at right angles. The barrier exerts an impulse of magnitude 1.7 N s on B. Find the speed with which B rebounds from the barrier. [3]
- (iii) Find also the speed with which B moves towards the barrier following its second collision with A.
- 6 (i)



A uniform lamina ABCD has the shape of a trapezium which is right-angled at A and D, and AB = 1.5 m, AD = 1.2 m and CD = 0.5 m, as shown in the diagram. Show that the distance of the centre of mass of the lamina from AB is 0.5 m.

- (ii) A cupboard door, of weight 165 N, is modelled by the uniform lamina ABCD. The door has smooth hinges at the points P and Q of the edge AB, which is vertical. AP = BQ = 0.2 m. The door is open and is in equilibrium. Find the magnitude and direction of the horizontal component of the force on the door at each of P and Q.
- (iii) A wedge is now placed between the door and the floor at D, exerting a vertically upward force on the door of magnitude F newtons. The horizontal components of the forces on the door at P and Q are now both zero and the door is in equilibrium. Calculate F, and state the magnitude of the resultant force on the door due to the hinges.
- A ball A is moving under gravity. A man throws another ball B, from a point O, at an instant when A is vertically above O and moving horizontally. B is thrown with initial speed  $12 \,\mathrm{m\,s^{-1}}$  in a direction making an angle of  $40^{\circ}$  above the horizontal. A and B collide at a point C which is at the same horizontal level as O.
  - (i) Find the time taken for B to travel from O to C.

[2]

(ii) Find the distance OC.

[2]

(iii) Show that A passes over O at a height of about 12.1 m.

[3]

(iv) Find the angle between the direction of motion of A and the horizontal, immediately before A and B collide. [4]

M2 JUNOI

$$N2(-7)$$
:  $625-500=1000$  [2]

(2)

$$F = ma \cdot \frac{1}{4}$$
 $= mg$ 
 $ab \cdot N = mg$ 
 $F \leq \mu N, S \Rightarrow M \Rightarrow mg$ 

using 
$$v = rur$$
,
$$\frac{1}{4}\sqrt{\alpha g} = r \cdot \frac{1}{2}\sqrt{\frac{g}{2}}$$

$$\Rightarrow r = \frac{1}{2}\alpha.$$

clearly, 
$$\frac{1}{2}a \leq PQ \leq \frac{3}{2}a$$
 [3]

(3) (1) 
$$\triangle KE = \frac{1}{2} \times 1000 \times 3^{2} = 450 \text{ J}$$

$$\triangle GPE = 100 \times 9.8 \times 158 \times 10^{9} = 2553 \text{ J}$$

$$\triangle RS = 500 \times 15 = 7500 \text{ J}$$
[1]
$$Sa 759 Conv. 15 = 450 + 2553 + 7500 = 50 \times 5 = 210^{9} \text{ (2)}$$

So 750 Con 15 = 450 + 2553 + 7500 , So = 21.0° (218)

[3]

from A, (24x15) 12 + (20x20) x (39-x) = (24x15+20x20) >1 for non-topphing 360x12 +600 (39-x) \$ 24 [4]

x > 7.8cm

(24x15)x 71 + (20x30) x 25 = (24x15 +20x20) 3 .: \( \vec{y} = 18.4375. \), and \( \vec{\vec{x}} = 12.

184715 : toma x 12 184375 U \$ 33.057....

[4]

(5) Assuming it's not an oblique impact, (?) hejan: 5 0 A B ofter: 4.5

Cono. of man: 0.3x5+0 = 0.3v+ 0.2x4.5 (i)

> [4] and so  $e = \frac{2.5}{5} = \frac{0.5}{5}$

(1:1)

1.7 = 0.2v - - 0.2x4.5

: v = 4 mi

[3]

(iii)

0.3.2 + 0.2.-4 = 0.3 VA + 0.2 VB C. 4 M. :

 $3v_{A}+2v_{q}=-2$   $v_{B}-v_{A}=0.5(2--4)$ 

N's law o upado:

VB = 1.4 ms

[4]

Mas: (=x1.2x1) x 0.4 + (0.5x1.2)x0.6 = 1.2 = → ₹ = 0·24 + •·36 = 0.5 -[4] C:) Ma(4): Xx1.1 - 165 x 0.5 = 0 So havis fareso are: P: 75 N → one Q: 75 N ← [4] (ii)  $M_{AB}(S)$ :  $F_{x}1.2 - 16S_{x}0.5 = 0$  So F = 68.75 N& huge Noutet = 165-61-75 = 96.25 ~ [3] fans: [x=120=40+ A+ C, y =0 = + = 12840 . = 1.57 s [2] and OC = 12cays xt, = 14.5 m [2] For A, y=h-4.9t2, so at t, whiy=0, h = 12.14 ... ~ 12.1m. [2] A: = 120040 and j = -9.8 t.

A: 
$$z = 126040$$
 and  $y = -9.8 t$ .  
So at C: 120040° 15.4263...

So 
$$\theta = 59.2^{\circ}$$
 below harm.

[4]